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Region 

The van der Waals equation of state for binary mixtures has been used to deter- 
mine the location and shape of the Griffiths shield region (where three tricritical 
lines intersect). If one takes the geometric mean for a12 , the arithmetic mean for 
b12, and the configurational free energy as ideal, the center of the Griffiths shield 
region is found only when the ratio of molecular sizes is infinite. When the Flory 
equation for the configurational free energy for mixtures of chain molecules is 
substituted for the ideal form, the results appear to be somewhat different. 
However, for all the cases studied, with systems which approach geometric 
mean behavior one finds the shield region only when the ratio of molecular size 
is very large and when the internal pressure of the small molecule is very much 
greater than that of the long-chain molecule. 

KEY WORDS: Tricritical lines; Griffiths shield region; binary mixtures; 
molecular size differences; van der Waals equation of state; Flory con- 
figurational free energy. 

1. I N T R O D U C T I O N  

Twenty  years ago in this laboratory,  van K o n y n e n b u r g  ~l) made a detailed 

computer  study of the types of phase diagrams that  could be derived from 

the van der Waals  equa t ion  for b inary  mixtures. Most  of the calculat ions 
were made  for molecules of equal size (van der Waals  bl = b2), a l though a 
few calculat ions were made  for the case b 2 = 3 b l  . The global phase 
diagrams were classified into five types according to the connectivi ty of the 
critical lines; these include all but  one of the major  types of b inary-mixture  

phase diagrams k n o w n  to chemists and  chemical engineers. (The exception, 
now k n o w n  (2) as type VI, shows a low-temperature  lower critical tern- 
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perature and requires a nonrandom ordering not included in the van der 
Waals formulation.) 

In their treatment of van der Waals phase diagrams (1'3'4~ van 
Konynenburg and Scott introduced three reduced parameters to describe 
the binary interactions: 

= (b2 - b l ) / ( b 2  + bl) --- ( V(2 - Vcl  )/( Vc2 ..Jv Vcl  ) (1) 

= (a22/b 2 - a l ~/b 2 ) / (a : z /b  2 + a l 1/b 2) 

= (Pea - Pc l ) / (Pc . z  + Pc~) (2) 

A = (a22/b 2 - 2a12/b 1 b z + aa~/bZ)/(a2: /b  2 + a H / b  2) (3) 

where bl and b 2 a r e  the van der Waals intrinsic volume parameters, while 
al~, al; ,  and a22 are the attraction parameters for like and unlike pairs in 
the binary mixture. For van der Waals and van der Waals-like equations, 
the parameter ~ measures the relative difference in size of the two molecules 
and is related to the difference in critical volumes Vc~ and Vc2 of the two 
pure-fluid components; similarly, the parameter ~ measures the relative 
difference in "internal pressure" and is related to the difference in critical 
pressures Pc~ and P(2 of the two fluids. The parameter A is a measure of the 
(low-temperature, high-density) enthalpy of mixing; it determines (for an 
ideal configurational entropy) the magnitude of the deviation from ideal- 
solution behavior at low temperatures and high densities. 

Figure 1 shows what we have called the "master diagram" for mixtures 
of molecules of equal size (3 = 0). This is no t  the original van Konynenburg 
diagram, for he had missed the small triangular region in the center. This 
was first discovered by Furman et  aL ~5) in a three-component system and 
later found by Furman and Griffiths (6) for a van der Waals binary mixture. 
This "Griffiths shield region" occurs around the intersection of three 
tricritical lines that form the boundaries between types, and is charac- 
terized by phase diagrams with critical lines and three-phase lines in 
addition to those found in adjacent regions outside the shield. This com- 
plex behavior does not correspond to any presently known binary phase 
diagrams, presumably because most known systems are found not far from 
the locus (shown dashed in Fig. 1) of the geometric mean approximation, 

a12 = (all a22) 1/2 (4) 

The question then arises: if one goes to systems where the molecules 
have very different sizes, will the shield region move closer to the geometric 
mean line? A partial answer is given by some previously reported results (3) 
for geometric-mean systems. If Eq. (4) is valid, the parameter A is a 
function of ~: 

A = 1 - (1 - ~2)1/2 (5 )  
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Fig. 1. Master diagram for van der Waals mixtures of molecules of equal size (~ = 0). The 
shield region is at the upper center around the point where the three tricritical lines intersect. 
The geometric mean [Eqs. (4) and (5)] is shown by the dashed line. The diagram is divided 
into five principal regions and is further subdivided by the two diagonal straight lines 
that indicate the presence or absence of azeotropes. For details see ref. 4. (Reproduced by 
permission from ref. 12.) 

so tha t  a single ~, ~ d i ag ram can be cons t ruc ted  (Fig.  2; the co r re spond ing  
figure in ref. 2 has several  lines p lo t t ed  incorrect ly) .  The  two tr icri t ical  lines 
( co r re spond ing  to the vanishing of three-phase  kinks  in cri t ical  lines 
s tar t ing from the cri t ical  poin ts  of  the two pure  fluids) s tar t  f rom 

= 0.48514 and - 0 . 4 8 5 1 4  at  ~ = 0, and  do  not  intersect  unti l  ~ = - 0 . 8 0  at  
= 1 ( co r re spond ing  to the l imit  at  which the ra t io  b2/b 1 becomes  infinite). 

However ,  fur ther  ca lcula t ions  were requi red  to de te rmine  how close to the 
geometr ic  mean  the shield region gets for finite ratios.  We  now repor t  some 
of these results. 

2 .  P R O C E D U R E  

W e  star t  with a general ized van der  W a a l s  equa t ion  for a b ina ry  
mixture:  

p V , , / R T =  1 + c f (b /V, , , )  - a / ( R T V m )  (6) 
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Fig. 2. Types of phase equilibria for van der Waals mixtures obeying the geometric mean for 
a12. Negative values of ~ are not shown because the origin is a center of symmetry. ~ and 
coordinates are shown for a few binary mixtures of n-alkanes. This is a corrected version of 
Fig. 2 in ref. 3 (where some of the lines were misplotted). 

The parameters a and b have the usual van der Waals meaning, except that 
for mixtures they are quadratic functions of the mole fractions: 

a = x21all  -F 2x 1 x2a12 + x~a22 (7) 

b = x~bll + 2XlX2bl2 + x~b22 (8) 

The parameter c, first introduced by Prigogine (7) but appearing here in a 
form first introduced by Beret and Prausnitz, ~8) adds a third dimension to a 
corresponding-states treatment; it allows for the entropy differences 
produced by a chain molecule with internal degrees of freedom. The 
function f (b /Vm) is the free volume function, which for the van der Waals 
equation itself is b / ( V m -  b). 

The pressure equation can be integrated to yield the Helmholtz free 
energy; one then adds the entropy of ideal mixing to obtain an equation for 
the Helmholtz free energy A m of a binary mixture: 

Am(T, Vm, x ) -  o o XIAm(T, V m ) - x 2 A ~  VOm) 

= -RTln(Vm/V~ - RTcg(b/Vm) - a/Vm + RT(x l  In x~ + x2 in x2) 

(9) 

Here A ~ and A ~ are the molar Helmholtz free energies of the pure fluids in 
their ideal-gas state at reference molar volume V~ and the function 
g(b/Vm) arises from integration of the function f i n  Eq. (6). The final term 
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in Eq. (5) is the combinatorial free energy of ideal mixing. An alternative 
for this in the dense fluid mixture would be the simple Flory (9) expression 
for mixing chains of different length; this is done by adding to Eq. (9) the 
extra term R T [ x  1 in b~ + x 2 In b 2 - -  ln(xl bl + x 2 b 2 ) ] .  

Two of the simplest forms for g(b/Vm) are that of the original van der 
Waals equation and a modification that Scott ~176 suggested some years ago. 
A third is that derived from the widely used equation of Carnahan and 
Starling/11) They are most easily expressed in terms of a new variable, 
y = b/(4Vm): 

van der Waals: g = ln(1 - 4y) (10a) 

Scott: g = 2 ln(1 - 2y) (10b) 

Carnahan and Starling: g = 4y(1 - 3y/4)/(1 - y)2 (10c) 

The computer programs that we have written permit a variety of 
choices: among the various forms of g, between the van der Waals and 
Lorentz combining rules for b12, between ideal and Flory mixing, and for 
choices of c other than 1. In fact, we have largely restricted our calculations 
to the van der Waals or Scott forms for g, to c =  1, and to the van der 
Waals combining rule [the arithmetic mean b~2 = ( b l l  q- b22)], which seems 
more appropriate for chain molecules and reduces to a linear expression 
for b: 

b = x l b l  +x2b2 (11) 

Most of our calculations involve three kinds of Fortran computer 
programs: 

1. CRLN, a program for generating critical lines [with determination 
of (O4Gm/~X4)T,p to distinguish between stable and unstable critical lines]. 

2. CEP, a program for determining critical end points by con- 
structing the tangent plane to the free energy surface at a critical point and 
determining whether the plane cuts the free energy surface anywhere else; 
this determines whether the critical point is stable or only metastable. 

3. Various programs to determine two- and three-phase coexistence 
curves. 

For  positive values of A there are three major critical lines, two that 
start from the gas-liquid critical points of the two pure components 
(labeled C~ and C2) and a third (C,,,) that starts from the liquid-liquid 
critical solution point of the close-packed mixture (V m = b); these may be 
examined by plotting them on a y, x graph for various choices of the 
parameters 3, ~, and A. These critical lines may or may not be connected 
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by a continuous set of critical points; if all the intervening points are stable 
(as distinct from metastable or unstable), this defines the type of the phase 
diagram. However, some parts of the critical lines pass through unstable 
regions or regions of negative pressure (metastable or unstable), and 
different parts may not connect at all. 

Some typical y, x graphs are sketched in Fig. 3, where the solid lines 
represent stable parts of the critical lines (terminating at critical end 
points), while the dashed lines and dotted lines represent metastable and 
unstable parts, respectively. The first graph (Fig. 3a) is the very sym- 
metrical y, x plot one obtains at the exact center of the shield region for 
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Fig. 3. Some typical y, x graphs (sketched, not to scale): (a) a system at the center of the 
shield region for the symmetrical ~ = 0 master  diagram (Fig. 1 ); (b) a system inside the shield 
region, showing a third stable critical line; (c, d) two systems outside the shield region, but  
near a double point. The solid lines are stable critical lines, the dashed lines metastable ones, 
and the dotted lines unstable ones (see text). 
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= 0; qualitatively the diagram can be described as consisting of a distor- 
ted circle and three intersecting nearly straight lines. Any change in ~ or A 
destroys part of the symmetry and part of the connectivity and distorts the 
y, x graph. A point where parts of the critical lines change connectivity 
(exchange ends), as shown in the difference between Figs. 3c and 3d, is a 
mathematical double point. Where residual parts of what was originally the 
"circle" form detached stable critical lines (as in Fig. 3b), the system lies 
within the shield region; otherwise (as in Figs. 3c and 3d), the system lies 
outside. (Except for this difference, Figs. 3b and 3d are quite similar, 
although the latter is closer to the double point.) 

The first and easiest step in determining the topology of a master 
diagram is to locate the double points. Frequently, but not always, a 
tricritical line lies extremely close to the double-point line; where the boun- 
daries between types II and III are shown in Fig. 1, the tricritical line lies 
so close to the double-point line that the intervening region (which has 
been called (12) type IV*) is narrower than the width of the printed line. 
However, where a substantial type IV region exists between types II and 
III, the double-point line runs down the middle of the type IV region; the 
II-IV boundary is then a tricritical line, while the IV-III boundary occurs 
where two detached critical lines coalesce (i.e., where two critical-endpoint 
lines join smoothly). 

While, in principle, some of these points could be determined by com- 
plicated analytic procedures, in practice we have proceeded empirically by 
calculating critical lines for selected values of the system parameters. 
Examination of the computer output can distinguish between stable (or 
metastable) and unstable regions of the critical lines and the range of 
parameters within which the double points must lie. One can then, while 
keeping two parameters constant (normally ~ and one of the other two), 
vary systematically the third and determine the double point as precisely as 
desired. 

The next step is to determine the tricritical point, again by varying a 
parameter systematically until a small unstable region of the critical line 
(which shows up as a kink in the T, p graph) has decreased in length to the 
vanishing point. The lengthiest task is that of determining critical end 
points with CEP; this is necessary to determine the boundaries of the shield 
region and the nontricritical boundary of type IV regions. 

3. R E S U L T S  

Most of the early calculations were made with the assumptions of an 
ideal configurational free energy and of the van der Waals combining rule 
for bl2 [i.e., Eq. (11)], even though there is an inconsistency between the 
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two assumptions, since the former is more nearly appropriate for mixtures 
of large and small spheres and the latter for mixtures of chain molecules. 
The shapes of the shield regions for ~ = 0.0, 0.5, 0.75, and 0.9 with these 
assumptions and the simple van der Waals form of g(y) [Eq. (10a)] are 
shown in Fig. 4. They move progressively left on the master diagram into 
regions of negative ~ and become increasingly distorted. Although the 
breaking of the symmetry means that the three tricritical lines are no 
longer required to intersect at exactly the same place, the intersections are 
remarkably close together. Figure 5 shows the movement of the "center" of 
the shield region (i.e., the point of intersection) with increasing ~ for both 
the van der Waals and Scott g(y). The two curves are very similar, except 
that the Scott form does in fact reach the geometric-mean line at about 
~ =0.9. 

More recently calculations have been made using the more nearly 
consistent assumptions of the van der Waals additive b12 and the Flory 
configurational free energy for mixing chain molecules. For these systems 
the intersections of the tricritical lines also moe to the left to more and 
more negative ~'s, but there are important other differences that we have 
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Fig. 4. Tricritical lines and the shield region for systems following the van der Waals g(y), 
the ideal configurational free energy, and the van der Waals b12. The diagrams for ~ = 0.0, 0.5, 
0.75, and 0.9 are shown. 
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Fig. 5. Locus of the "center" of the shield region (the almost common intersection of the 
three tricritical lines) for systems with the ideal configurational free energy, the van der Waals 
b12, and either (a) the van der Waals g(y) or (b) the Scott g(y). Numbers attached to points 
on the lines are values of ~. 

not yet adequately explored. However, some preliminary observations can 
be made: 

1. For  large values of 4 (e.g., 4=0.98,  corresponding to a chain 
length ratio r = 100), there are four tricritical lines, not three. 

2. Three of these tricritical lines intersect almost at a common point, 
as in the case of ideal configurational free energy, and this intersection 
appears to move in such a way as to reach the geometric mean line by 
4= 1.o. 

3. The intersections of the fourth tricritical line with the others are 
quite significantly separated, and it appears likely that they will never reach 
the geometric-mean line. 

4. For  large values of 4, some (but not all) of the tricritical lines seem 
to be fairly insensitive to the precise value of ~; this suggests that parts of a 
master diagram for high polymer solutions (r > 100) should be reasonably 
independent of r. 

We have not yet searched for critical end points with systems 
corresponding to this Flory chain-molecule model, so we cannot yet 
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produce  an equiva lent  of  Fig. 4. Since there are now four crit ical lines, we 
suspect  tha t  there  m a y  be new k inds  of  phase  behav ior  in the new mas te r  
d iagrams.  

W e  conc lude  on a d i scourag ing  note. Even if our  future ca lcula t ions  
show a shield region near  the geomet r i c -mean  line for so lu t ion  of chain 
molecules,  the prospec ts  of f inding such systems exper imenta l ly  seem poor.  
Such systems will surely lie in regions of the mas te r  d i a g ra m beyond  
A = 0.2 and  ~ = - 0 . 7 .  The  c o m b i n a t i o n  of large, posi t ive ~'s with large, 
negat ive  ~'s requires  a long-cha in  po lymer  with weak in terac t ions  between 
segments  ( low internal  pressure  or  "solubi l i ty  p a r a m e t e r " )  d issolved in a 
low-molecu la r -we igh t  solvent  with very s t rong in te rmolecu la r  in terac t ions  
(high in terna l  pressure  or  solubi l i ty  parameter .  I t  would  not  be too  great  
an exaggera t ion  to represent  such systems as being like the system 
po ly te t r a f luoroe thy lene  + mercury.  
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